Poisson Distribution

The probability mass function of the Poisson distribution is given by:

P(k;λ)=λkeλk!

12.5
25
036912151821240.000.010.020.030.040.050.060.070.080.090.100.110.12kProbability

Binomial Distribution

The probability mass function of the binomial distribution is given by:

P(k;n,p)=(nk)pk(1p)nk

25
0.5
036912151821240.000.020.040.060.080.100.120.140.16k (Number of Successes)Probability

Geometric Distribution

The probability mass function of the geometric distribution is given by:

P(k;p)=(1p)k1p

0.15
25
1471013161922250.000.020.040.060.080.100.120.140.16k (Number of Trials)Probability

Normal Distribution

The probability density function of the normal distribution is given by:

f(x;μ,σ)=1σ2πe(xμ)22σ2

0
1
−10−8−6−4−202468100.00.10.20.30.40.50.60.70.80.91.01.11.21.31.4xProbability Density

Exponential Distribution

The probability density function of the exponential distribution is given by:

f(x;λ)=λeλxfor x0

5
0.00.10.20.30.40.50.60.70.80.91.0012345678910xProbability Density

Beta Distribution

The probability density function of the beta distribution is given by:

f(x;α,β)=xα1(1x)β1B(α,β)for 0<x<1

2
5
0.00.10.20.30.40.50.60.70.80.91.00.00.51.01.52.02.53.03.54.04.55.0xProbability Density

Gamma Distribution

The probability density function of the gamma distribution is given by:

f(x;α,β)=xα1ex/ββαΓ(α)for x0

2
5
0.00.20.40.60.81.01.21.40.00.51.01.52.02.53.03.54.0xProbability Density